

THE EURASIAN BLACK VULTURE AND ITS EEP CHALLENGES IN CAPTIVE BREEDING AND REINTRODUCTIONS

MARLEEN HUYGHE Katja Wolfram

STRUCTURE

present situation EEP **EEP:** THE CHALLENGE OF **EBV** CAPTIVE BREEDING

ETAT DES POPULATIONS POUR LES

ROIS ESPECES DE VAUTOURS DE LA REGION DES GRANDS CAUSSES

BREEDING BIOLOGY

long lifespan, monogamous(?) late sexual maturity long reproductive cycles profound bi-parental investment

> in situ wild-born wild

HATCHING SUCCESS 79% (Skartsi et al., 2008) 152 eggs, 1994-2005, Greece 90% (Hiraldo, 1983) 103 eggs, 1973-1977, secluded Spain

BREEDING SUCCESS 69% (Skartsi et al., 2008) 193 eggs, 1994-2005, Greece 75% (Moran-Lopez et al., 2006) 520 eggs, 2000, Spain 90% (Hiraldo, 1983) 103 eggs, 1973-1977, secluded Spain

ex situ wild-born captive & captive-born captive (Wolfram et al., in prep.) 1980 - 2012, 503 eggs, 72 breeding males, 77 breeding females, 86 breeding pairs HATCHING SUCCESS 32.4% BREEDING SUCCESS 21.7% (> 30 d) reintroduced wild-born wild & captive-born wild HATCHING SUCCESS 67% (LPO, 2010/11)

153 eggs, 1996-2010, Grands Causses BREEDING SUCCESS

59% (LPO, 2010/11) 153 eggs, 1996-2010, Grands Causses

Bilan 2010

Reintroduction and conservation of Vultures in the Verdon canvor

Wolfram

recommendations for NEW PAIRS (2012)

follow-up pair bonding BEHAVIOR

recommendation for suspension REINTRODUCTIONS

FUTURE ACTIONS

INSTITUTE LEVEL

HUSBANDRY conditions (checklist, questionnaire, personal visits by expert[?])

breeding failure due to DISTURBANCE SPECIAL FOCUS

pair BOND quality

participants with scarce COMMUNICATION

suitability of captive NESTS

INSTITUTE LEVEL

HUSBANDRY conditions (checklist, questionnaire, personal visits by expert[?])

breeding failure due to DISTURBANCE SPECIAL FOCUS

pair BOND quality

participants with scarce COMMUNICATION

suitability of captive NESTS

EEP LEVEL

improve COMMUNICATION

revision and distribution husbandry GUIDELINES

INTRODUCTION letter for new members

GENETIC sampling and sexing

solve contract issues with NON-EAZA PARTIES

HUSBANDRY conditions (checklist, questionnaire, personal visits by expert[?])

breeding failure due to DISTURBANCE SPECIAL FOCUS

pair BOND quality

participants with scarce COMMUNICATION

suitability of captive NESTS

improve COMMUNICATION

revision and distribution husbandry GUIDELINES

INTRODUCTION letter for new members

GENETIC sampling and sexing

solve contract issues with NON-EAZA PARTIES

improve in situ follow-up of EEP-born **REINTRODUCED** EBVs

improve contacts to revalidation CENTERS, help with IMPORT of males

> examine need/feasibility for **BREEDING CENTERS**

W ideal demography expanding population

Figure 4: Signature of population contraction in the A. mosachus captive population. Reproductive (colored; male: blue, female: rose) and non-reproductive phases (grey) are indicated, as well as number of unsexed individuals. Dashed lines represent average number of individuals per age class of 5 years in either sex. Grey background indicates distribution pattern expected for an expanding population, deviation from which argues for population decline.

K. Wolfram

A: Longevity in the EEP studbook population in the period of 1950-2011 (total records analyzed: males n = 70, females n = 72, unknown sex n = 11), high early chick mortality within the first 30 days excluded.

B: Composition of the living EEP studbook population at time of analysis (males n = 84, females n = 100, unknown sex n = 6) depicted as conventional age pyramid. Patterned bars represent wildcaught (male n = 61, female n = 74), blank bars represent captive-born individuals. For age classes 10 to 14 years and 15 to 19 years a significant male deficit is evident.

K. Wolfran

present situation EEP: THE CHALLENGE OF EBV CAPTIVE BREEDING

Aegypius monachus captive breeding

ex situ wild-born captive & captive-born captive captive-born young **required** to sustain captive population at current size over the next 25 years **exceeds** number of actually **produced** young

situation worsens by giving young for release!

reintroductions from EEP to be **suspended** until demographic trends stabilized

RECOMMENDATION

HOW CAN ALL SIDES SUPPORT EACH OTHER

EBV EEP

provide CAPTIVE-BORN YOUNG for releases

in general: all young following **3RD OFFSPRING** of a pair could be **RELEASE CANDIDATES**

possible additional release candidates before 4th young: to be decided on INDIVIDUAL BASIS for each breeding pair/young each year GREFA

provide older ADULT MALES for EEP captive breeding

LPO

improve COMMUNICATION on captive-born released birds Provide samples of released birds for EEP scientific work

... and exchange of EXPERTISE

