INTERNATIONAL WORKSHOP ON POISONING AND VULTURES IN ÁFRICA-ANDALUCÍA

Ronda, Málaga 8-11 April 2014

Conventional and nonconventional samples used in toxicology analysis

Irene Zorrilla

Centro de Análisis y Diagnóstico de la Fauna Silvestre Consejería de Medio Ambiente y Organización del Territorio

International workshop on poisoning & vultures: what is the situation in Africa and how can Europe help? April, 8-11. 2014

Which sorts of compounds are we considering?

- Organophosphates
- Carbamates
- Organochlorines
- Fungicides
- Pyrethroids
- Rodenticides

What is considered a conventional sample?

- Samples typically favoured or collected for toxicological analyses
- Soft tissues (e.g., kidney and liver)
- Blood **
- Ingested material**
- Digestive tract
- Brain tissue

**Can also be collected from living birds

How are poisons incorporated into samples?

How are poisons incorporated into samples?

Compound	Time to death	Detectable (compound or metabolites)
Strychnine	Fast – minutes	Stomach?
Organophosphates Carbamates	Depends can be hours	Mouth Talons Stomach *plasma, brain ChE
Rodenticides anticoagulants	Depends can be 24-48-72 hours	Stomach Liver
Organochlorines	Hours -years	Mouth Talons Stomach Fat (with except endosulfan)

When are these samples at their best?

- Living bird: balance taking blood sample ASAP and potential health repercussions
- Carcass: has to be fairly fresh and intact or still contain undamaged target sample
- Cause of death cannot have been too fast-acting
- Presence of acute toxins may only be measured in some samples (e.g. inside mouth)
- If you can freeze or even refrigerate the samples to stop the degradation of toxins

Signs a carcass is fresh

- Body still 'squishy' but firm, retaining moisture
- Absence of living or deceased insects on or around...
- ...BUT in parts of Spain and in Africa insects may be present even before death
- Bait residues dicernible

Bait residues

- Individual grains visible, colour stains
- Easy to see inside the craw, ventricle, stomach
- If an organophosphate, you can sometimes smell it, e.g. chlorphenvinfos – NOT the case for carbamates
- **take pictures that can readily be linked to carcass

Signs a carcass is decomposed

advanced

Mummification/desiccation/skele

What is considered 'unconventional'?

Samples not typically collected or considered

- Talons
- Foot washes (with solvent)
- Beaks/tongues/palates
- Oral swabs
- Vomit
- Insects
- Soil/ground under the carcass
- Feathers
- Pellets
- Bone
- Eyes

talons

beak & mouth/oral cavity

Valuable alternative samples in wildlife forensic cases

carcass fauna

digestive tract

Tongues of degraded birds and mammals

Samples of limited/variable value for detecting poisons?

Ground under the carcass

Bones

Feathers

Studies

Our experience

toxin	sample	reference	Toxin	level detected	species
diazinon	Gosling feet	Vyas et al.		mg/kg	
		2003			
carbofuran	Screech-owl talons	Vyas et al. 2005	Aldicarb Aldicarb sulfoxide Aldicarb sulfone	0.74 0.57 0.02	black kite
carbofuran	Vulture talons *& beaks	Otieno et al. 2010, 2011			
			Chlorfenvinphos	0.45	griffon vulture

*Often best sample when presented with autolyzed carcasses, talons may be clenched around bait material

Beak & oral cavity, palate

- If highly acute or high concentration of poison is ingested
- Rapid onset of death, toxins not metabolized or spread to organs
- Chlorpyrifos detected in mouth/oral cavity of black kite (bait)
- Carbofuran detected in vulture beak simple by Otieno et al.
- Chlorfenvinphos detected in vulture palate

Carcass insects

- Important to analyze, even if dry
- Some toxins can accumulate in chitin -including lead-
- Carbofuran and chlorfenvinphos have been detected in insects recovered with carcasses

Vomit & digestive tract

- Vomit may contain poison in original – unmetabolized - form
- Remains in digestive tract may be protected from environmental conditions

 Both provide direct evidence that poison was consumed

Ground/soil beneath carcass

- Still working with this sample, but should be considered
- Soil under victim's head may contain vomit
- Fluids from carrion decomposition and/or bait (poison source) may have leached into ground

